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preferred to express the seminvariant as (2h + 4k + 3/) 
rather than (h - k,/). 

The 6 equivalent origins are correctly given as (0,0,0), 
( 0 , 0 , 9 ,  ~ 2  ~ 1 2 ~  2 ~  , 2 ~  (~,~,0), It if ~,~,p, (g,~,0) and looks as one I,~, ~', ~./. 

needed to specify the origin in two directions, i.e. along the z 
axis and in the xy plane. However, it is only necessary to 
specify the origin in one direction, along the line passing 
through (0,0,0) and (~, ~, ½). All the six permissible origins lie 
on this line since they are generated by the successive 
addition of (], ], ½) to (0, 0, 0). The origin is uniquely specified 
through the fixation of the phase of one reflection which will 
take on different phase values in the six permissible origins, 
each differing by 2z~/6. 

The only reflections which do not take on different values 
in the six permissible origins are those which have (2h + 4k 
+ 3/) = n6. This proves the seminvariant vector to be (2h + 
4k + 3/) and the seminvariant modulus to be 6. 

In the tables given by Hauptman & Karle (1956) and 
Karle (1974) the type should be 3P6, not 3P32. In the 
notation of Giacovazzo (1974)the H - K  group is (2h + 4k + 
3/)P6. In all tables the seminvariant phases should be tPhk t 
where  (2h + 4k + 3/) =- 6. The permitted values for semi- 
independent phases are 116 II, except for 112 II for h + 2k = n3 
and 11311 for l even. The number of phases linearly semi- 
independent to be specified is 1. 
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A method is discussed for obtaining the best proper rotation to relate two sets of vectors. 

The simple procedure for obtaining the best rotation to relate 
two sets of vectors described in an earlier paper (Kabsch, 
1976) has been used in processing oscillation films (Kabsch, 
1977), for the determination of non-crystallographic sym- 
metry elements (Kabsch, Gast, Schulz & Leberman, 1977), 
and for a comparison of macromolecules. In the last 
application an improper rotation was sometimes obtained 
from the procedure (Nyburg & Yuen, 1977). The purpose of 
this communication is to show how a best proper rotation 
can always be obtained from the procedure. 

Let x, and y,  (n = 1 . . . . .  N) be two given vector sets and 
w, the weights corresponding to each pair x,, y,. All possible 
orthogonal matrices U for which the function 

RR is a known symmetric positive definite matrix whose 
positive eigenvalues/z k and eigenvectors a k can be determined 
by standard procedures. The general solution of (5) is of the 
form 

(S + L)= (sii + lu)= (~. ak~kj, akV/l.lk), (6) 
k 

where ak~ denotes the ith component of a k and the arbitrary 
quantities o k can only assume the values + 1. If an eigen- 
value/z k is degenerate the eigenvector a k of [~R cannot be 
determined uniquely. However, S + L will not be affected by 
this ambiguity if all its eigenvalues of the magnitude x/~tk 
have identical signs. The final construction of all orthogonal 
matrices U = (uii) for which E assumes an extremal point is 

e = ½ Y w. (Ux. - y.)2 
n 

has an extremal point must obey [see equation (9) of 
Kabsch, 1976] 

U(S + L) = R. (2) 

Writing Xnk and Ynk for the kth components of the vectors x, 
and y,  the matrices R and S are defined as 

R : ( r /y) :  ( ~  wnYniXnj ) (3) 
tl 

S = (su)= (~  w.xnix.j ). (4) 
n 

L = (l~j) is a symmetric matrix of Lagrange multipliers which 
is determined from the equation 

(S + L)(S + L) = J~R. (5) 

(1) given by 

Uij = Z bkiakj, (7) 
k 

where bki is the ith component of the vector 

bk= Oa k = U(S + L)aJ(akV/.ttk) = RaJ(akV@k ). (8) 

The residual E at each extremal point is 

E = ½ Z w . ( U x . -  y .)2= ½ y w.(x~ + y~) 
n n 

- -  ~ why n. (I.Ix.) 
n 

= ½ Z Wn(x2n + yn2) - Z wn[ Z (bk.y.)(x.-ak)] 
n n k 

=½ Z w.(x~ z + yn z ) -  Z bk.(Rak) 
n k 

= ½ Z wn(xZ~ + y2 )_  Z OkV"Pk. (9) 
n k 
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The maximum of E is obtained if all 0.~, are - 1 .  The 
minimum of E is obtained if all 0.k are + 1, which agrees with 
the result of Kabsch (1976). 

It has also been shown in Kabsch (1976) that S + L must 
be positive definite at the minimum of E. Hence, from (2) the 
determinants of the two matrices, U and R, must have the 
same signs. 

In the case that det(R) > 0, the orthogonal matrix U 
corresponding to the minimum of E will be a proper rotation. 
In the case that det(FI) < 0, an improper rotation will be 
obtained at the minimum of E (Nyburg & Yuen, 1977). 
From (9), the smallest residual E corresponding to a best 
true rotation is then obtained if 0.~ = 0"2 = + 1 and 0"3 = - 1  
assuming that/23 is the smallest eigenvalue of [~FI (three- 
dimensional vector space). Note that if the smallest eigen- 
value is degenerate a best rotation cannot be determined 
uniquely in the case det(FI) < 0. 

Finally, it might be worth mentioning that this procedure 
can be generalized to find a best unitary matrix to relate two 
sets of vectors in the complex finite-dimensional vector 
space. 

Summarizing the above results, the following procedure 

for obtaining a best proper rotation in a three-dimensional 
vector space is suggested. 

(a) Remove any translation between the two given vector 
sets x n, yn and determine E 0 = ½ ~,,wn(x 2 + y~) and R. 

(b) Form ~IFI, determine eigenvalues/2k and the mutually 
orthogonal eigenvectors a k and sort so that g~ >/22 >/23. Set 
a 3 = a I × a 2 to be sure to have a right-handed system. 

(c) Determine Fla k (k = 1, 2, 3), normalize the first two 
vectors to obtain b l, b 2 and set b 3 = b~ x b 2. This will also 
take care of the case/22 >/2a = 0. 

(d) Form U according to (7) to obtain the best rotation. 
Set 0" 3 = - 1  if b3.(Fla3) < 0, otherwise o 3 = + 1. The residual 
error is then E = E o - v//21 - X/'/22 - 0.3V//23 • 
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A simple test for the validity of the rigid-body model for molecular vibrations in crystals is proposed. 

Since bond-stretching vibrations for atoms other than 
hydrogen and deuterium are normally of much smaller 
amplitude than other vibrations (bond-bending, torsional, 
rigid-body translational and rotational oscillations), the 
mean-square vibrational amplitudes of a pair of bonded 
atoms should be equal along the bond direction, even though 
they may be widely different in other directions. As Hirshfeld 
(1976) has pointed out, this provides a necessary (although 
by no means sufficient) condition that thermal ellipsoids 
derived by X-ray analysis represent genuine vibrational 
ellipsoids. If the condition is seriously violated, the Uij values 
may be suspected of being contaminated by charge-density 
deformation contributions or absorption or other systematic 
errors. 

Hirshfeld's 'rigid-bond' postulate can be expressed in a 
more general (though somewhat weaker) form as a 'rigid- 
body' postulate and used as a simple test for the validity of 
the rigid-body model of any molecule for which Ut/values 
are available. Since rigidity implies that all distances within a 
body remain invariant, all pairs of atoms in a rigid molecule 
can be regarded as being connected by virtual bonds. Hence 
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the equality condition should hold for all such pairs of atoms 
as well as it does for bonded pairs. Conversely, when the 
data satisfy the rigid-bond test, gross violation of the equality 
condition for certain pairs of non-bonded atoms within a 
molecule should indicate that the rigid-body model is 
inappropriate for the molecule in question and might also 
provide some hints about the nature of the internal motions 
within the molecule. 

With these ideas in mind, we have calculated mean-square 
vibrational amplitudes z 2 in the AB direction for all pairs of 

A , B  

atoms in several molecules from Uij values obtained by 
conventional least-squares refinement. We find that the 
condition A A 8 z2 - z2 ~ 0 is obeyed well in cases , = A , B  B , A  

where least-squares analysis of the vibration tensors in terms 
of rigid-body T, L and S tensors (Schomaker & Trueblood, 
1968) leads to good agreement between U/j(obs.) and 
U/j(calc.) values. This is hardly surprising, since the 
condition AA, n = 0 is obeyed exactly for the rigid-body 
model. 

More interesting are examples where the rigid-body 
analysis leads to poor agreement between Uu(obs.) and 
Uu(calc.). We discuss here one illustrative example in detail, 
that of 3-phenyl-3-benzyl-N-methylsuccinimide (Fig. 1), the 
crystal structure of which has recently been determined (at 
100 K) in our laboratory. The z ~  values for the 21.20/2 
directions between all pairs of C, N and O atoms are 


